Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.578
Filter
1.
Front Cell Infect Microbiol ; 14: 1386462, 2024.
Article in English | MEDLINE | ID: mdl-38725448

ABSTRACT

Introduction: The Nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway has been extensively studied for its role in regulating antioxidant and antiviral responses. The Equid herpesvirus type 8 (EqHV-8) poses a significant threat to the equine industry, primarily manifesting as respiratory disease, abortions, and neurological disorders in horses and donkeys. Oxidative stress is considered a key factor associated with pathogenesis of EqHV-8 infection. Unfortunately, there is currently a dearth of therapeutic interventions available for the effective control of EqHV-8. Rutin has been well documented for its antioxidant and antiviral potential. In current study we focused on the evaluation of Rutin as a potential therapeutic agent against EqHV-8 infection. Methods: For this purpose, we encompassed both in-vitro and in-vivo investigations to assess the effectiveness of Rutin in combatting EqHV-8 infection. Results and Discussion: The results obtained from in vitro experiments demonstrated that Rutin exerted a pronounced inhibitory effect on EqHV-8 at multiple stages of the viral life cycle. Through meticulous experimentation, we elucidated that Rutin's antiviral action against EqHV-8 is intricately linked to the Nrf2/HO-1 signaling pathway-mediated antioxidant response. Activation of this pathway by Rutin was found to significantly impede EqHV-8 replication, thereby diminishing the viral load. This mechanistic insight not only enhances our understanding of the antiviral potential of Rutin but also highlights the significance of antioxidant stress responses in combating EqHV-8 infection. To complement our in vitro findings, we conducted in vivo studies employing a mouse model. These experiments revealed that Rutin administration resulted in a substantial reduction in EqHV-8 infection within the lungs of the mice, underscoring the compound's therapeutic promise in vivo. Conclusion: In summation, our finding showed that Rutin holds promise as a novel and effective therapeutic agent for the prevention and control of EqHV-8 infections.


Subject(s)
Antiviral Agents , Heme Oxygenase-1 , Herpesviridae Infections , NF-E2-Related Factor 2 , Oxidative Stress , Rutin , Signal Transduction , Rutin/pharmacology , Rutin/therapeutic use , Animals , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Signal Transduction/drug effects , Heme Oxygenase-1/metabolism , Mice , Herpesviridae Infections/drug therapy , Antiviral Agents/pharmacology , Virus Replication/drug effects , Disease Models, Animal , Antioxidants/pharmacology , Cell Line , Viral Load/drug effects , Horses , Female , Membrane Proteins
2.
Carbohydr Polym ; 337: 122118, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710546

ABSTRACT

Chrysin and rutin are natural polyphenols with multifaceted biological activities but their applications face challenges in bioavailability. Encapsulation using starch nanoparticles (SNPs) presents a promising approach to overcome the limitations. In this study, chrysin and rutin were encapsulated into self-assembled SNPs derived from quinoa (Q), maize (M), and waxy maize (WM) starches using enzyme-hydrolysis. Encapsulation efficiencies ranged from 74.3 % to 79.1 %, with QSNPs showing superior performance. Simulated in vitro digestion revealed sustained release and higher antioxidant activity in QSNPs compared to MSNPs and WMSNPs. Variations in encapsulation properties among SNPs from different sources were attributed to the differences in the structural properties of the starches. The encapsulated SNPs exhibited excellent stability, retaining over 90 % of chrysin and 85 % of rutin after 15 days of storage. These findings underscore the potential of SNP encapsulation to enhance the functionalities of chrysin and rutin, facilitating the development of fortified functional foods with enhanced bioavailability and health benefits.


Subject(s)
Antioxidants , Chenopodium quinoa , Flavonoids , Nanoparticles , Rutin , Starch , Zea mays , Flavonoids/chemistry , Rutin/chemistry , Zea mays/chemistry , Nanoparticles/chemistry , Chenopodium quinoa/chemistry , Starch/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Biological Availability , Hydrolysis
3.
Microb Cell Fact ; 23(1): 133, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720294

ABSTRACT

BACKGROUND: Low targeting efficacy and high toxicity continue to be challenges in Oncology. A promising strategy is the glycosylation of chemotherapeutic agents to improve their pharmacodynamics and anti-tumoral activity. Herein, we provide evidence of a novel approach using diglycosidases from fungi of the Hypocreales order to obtain novel rutinose-conjugates therapeutic agents with enhanced anti-tumoral capacity. RESULTS: Screening for diglycosidase activity in twenty-eight strains of the genetically related genera Acremonium and Sarocladium identified 6-O-α-rhamnosyl-ß-glucosidase (αRßG) of Sarocladium strictum DMic 093557 as candidate enzyme for our studies. Biochemically characterization shows that αRßG has the ability to transglycosylate bulky OH-acceptors, including bioactive compounds. Interestingly, rutinoside-derivatives of phloroglucinol (PR) resorcinol (RR) and 4-methylumbelliferone (4MUR) displayed higher growth inhibitory activity on pancreatic cancer cells than the respective aglycones without significant affecting normal pancreatic epithelial cells. PR exhibited the highest efficacy with an IC50 of 0.89 mM, followed by RR with an IC50 of 1.67 mM, and 4MUR with an IC50 of 2.4 mM, whereas the respective aglycones displayed higher IC50 values: 4.69 mM for phloroglucinol, 5.90 mM for resorcinol, and 4.8 mM for 4-methylumbelliferone. Further, glycoconjugates significantly sensitized pancreatic cancer cells to the standard of care chemotherapy agent gemcitabine. CONCLUSIONS: αRßG from S. strictum transglycosylate-based approach to synthesize rutinosides represents a suitable option to enhance the anti-proliferative effect of bioactive compounds. This finding opens up new possibilities for developing more effective therapies for pancreatic cancer and other solid malignancies.


Subject(s)
Antineoplastic Agents , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Hypocreales/metabolism , Rutin/pharmacology , Rutin/chemistry , Acremonium , Gemcitabine , Disaccharides/pharmacology , Disaccharides/chemistry
4.
PLoS One ; 19(5): e0303060, 2024.
Article in English | MEDLINE | ID: mdl-38723008

ABSTRACT

In the current study we investigated the impact of combination of rutin and vitamin A on glycated products, the glyoxalase system, oxidative markers, and inflammation in animals fed a high-fat high-fructose (HFFD) diet. Thirty rats were randomly divided into six groups (n = 5). The treatments, metformin (120 mg/kg), rutin (100 mg/kg), vitamin A (43 IU/kg), and a combination of rutin (100 mg/kg) and vitamin A (43 IU/kg) were given to relevant groups of rats along with high-fructose high-fat diet for 42 days. HbA1c, D-lactate, Glyoxylase-1, Hexokinase 2, malondialdehyde (MDA), glutathione peroxidase (GPx), catalase (CAT), nuclear transcription factor-B (NF-κB), interleukin-6 (IL-6), interleukin-8 (IL-8) and histological examinations were performed after 42 days. The docking simulations were conducted using Auto Dock package. The combined effects of rutin and vitamin A in treated rats significantly (p < 0.001) reduced HbA1c, hexokinase 2, and D-lactate levels while preventing cellular damage. The combination dramatically (p < 0.001) decreased MDA, CAT, and GPx in treated rats and decreased the expression of inflammatory cytokines such as IL-6 andIL-8, as well as the transcription factor NF-κB. The molecular docking investigations revealed that rutin had a strong affinity for several important biomolecules, including as NF-κB, Catalase, MDA, IL-6, hexokinase 2, and GPx. The results propose beneficial impact of rutin and vitamin A as a convincing treatment strategy to treat AGE-related disorders, such as diabetes, autism, alzheimer's, atherosclerosis.


Subject(s)
Diet, High-Fat , Fructose , Hyperglycemia , Inflammation , Oxidative Stress , Rutin , Vitamin A , Animals , Rutin/pharmacology , Oxidative Stress/drug effects , Fructose/adverse effects , Rats , Diet, High-Fat/adverse effects , Vitamin A/pharmacology , Vitamin A/metabolism , Inflammation/metabolism , Inflammation/drug therapy , Inflammation/pathology , Male , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Hyperglycemia/chemically induced , Molecular Docking Simulation , Rats, Wistar , Disease Models, Animal , Glycosylation/drug effects , Metformin/pharmacology , Glycated Hemoglobin/metabolism , NF-kappa B/metabolism , Hexokinase/metabolism , Catalase/metabolism
5.
BMC Complement Med Ther ; 24(1): 153, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38581023

ABSTRACT

BACKGROUND: Vortioxetine (VORTX) is a potent and selective type of selective serotonin reuptake inhibitor (SSRI) that is mainly prescribed for treating major depression along with mood disorders as the first drug of choice. Limited previous findings have indicated evidence of liver injury and hepatotoxicity associated with daily VORTX treatment. Rutin (RUT), which is known for its antioxidant properties, has demonstrated several beneficial health actions, including hepatoprotection. Therefore the current study aimed to evaluate and assess the ameliorative effect of RUT against the hepatotoxic actions of daily low and high-dose VORTX administration. METHODS: The experimental design included six groups of rats, each divided equally. Control, rats exposed to RUT (25 mg/kg), rats exposed to VORTX (28 mg/kg), rats exposed to VORTX (28 mg/kg) + RUT (25 mg/kg), rats exposed to VORTX (80 mg/kg), and rats exposed to VORTX (80 mg/kg) + RUT (25 mg/kg). After 30 days from the daily exposure period, assessments were conducted for serum liver enzyme activities, hepatotoxicity biomarkers, liver antioxidant endogenous enzymes, DNA fragmentation, and histopathological studies of liver tissue. RESULTS: Interestingly, the risk of liver damage and hepatotoxicity related to VORTX was attenuated by the daily co-administration of RUT. Significant improvements were observed among all detected liver functions, oxidative stress, and inflammatory biomarkers including aspartate aminotransferase (AST), alanine transaminase (ALT), lactate dehydrogenase (LDH), albumin, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), glutathione S-transferase (GST), total protein, acid phosphatase, N-Acetyl-/ß-glucosaminidase (ß-NAG), ß-Galactosidase (ß-Gal), alpha-fetoprotein (AFP), caspase 3, and cytochrom-C along with histopathological studies, compared to the control and sole RUT group. CONCLUSION: Thus, RUT can be considered a potential and effective complementary therapy in preventing hepatotoxicity and liver injury induced by the daily or prolonged administration of VORTX.


Subject(s)
Antioxidants , Chemical and Drug Induced Liver Injury , Rats , Animals , Antioxidants/pharmacology , Rutin/pharmacology , Vortioxetine , Inflammation/drug therapy , Glutathione/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Biomarkers
6.
Mikrochim Acta ; 191(4): 226, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38558261

ABSTRACT

The focus of this paper is laid on synthesizing layered compounds of CuMoO4 and Ti3C2Tx using a simple wet chemical etching method and sonochemical method to enable rapid detection of rutin using an electrochemical sensor. Following structural examinations using XRD, surface morphology analysis using SEM, and chemical composition state analysis using XPS, the obtained CuMoO4/Ti3C2Tx nanocomposite electrocatalyst was confirmed and characterized. By employing cyclic voltammetry and differential pulse voltammetry, the electrochemical properties of rutin on a CuMoO4/Ti3C2Tx modified electrode were examined, including its stability and response to variations in pH, loading, sweep rate, and interference. The CuMoO4/Ti3C2Tx modified electrode demonstrates rapid rutin sensing under optimal conditions and offers a linear range of 1 µΜ to 15 µΜ, thereby improving the minimal detection limit (LOD) to 42.9 nM. According to electrochemical analysis, the CuMoO4/Ti3C2Tx electrode also demonstrated cyclic stability and long-lasting anti-interference capabilities. The CuMoO4/Ti3C2Tx nanocomposite demonstrated acceptable recoveries when used to sense RT in apple and grape samples. In comparison to other interfering sample analytes encountered in the current study, the developed sensor demonstrated high selectivity and anti-interference performance. As a result, our research to design of high-performance electrochemical sensors in the biomedical and therapeutic fields.


Subject(s)
Antioxidants , Nanocomposites , Titanium , Chromatography, Gas , Rutin
7.
World J Microbiol Biotechnol ; 40(6): 184, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683406

ABSTRACT

The use of engineered nanoparticles against pathogenic bacteria has gained attention. In this study, zinc oxide nanoparticles conjugated with rutin were synthesized and their antivirulence properties against Pseudomonas aeruginosa and Staphylococcus aureus. The physicochemical characteristics of ZnO-Rutin NPs were investigated using SEM, FT-IR, XRD, DLS, EDS, and zeta potential analyses. Antimicrobial properties were evaluated by well diffusion, microdilution, growth curve, and hemolytic activity assays. The expression of quorum sensing (QS) genes including the lasI and rhlI in P. aeruginosa and agrA in S. aureus was assessed using real-time PCR. Swimming, swarming, twitching, and pyocyanin production by P. aeruginosa were evaluated. The NPs were amorphous, 14-100 nm in diameter, surface charge of -34.3 mV, and an average hydrodynamic size of 161.7 nm. Regarding the antibacterial activity, ZnO-Rutin NPs were more potent than ZnO NPs and rutin, and stronger inhibitory effects were observed on S. aureus than on P. aeruginosa. ZnO-Rutin NPs inhibited the hemolytic activity of P. aeruginosa and S. aureus by 93.4 and 92.2%, respectively, which was more efficient than bare ZnO NPs and rutin. ZnO-Rutin NPs reduced the expression of the lasI and rhlI in P. aeruginosa by 0.17-0.43 and 0.37-0.70 folds, respectively while the expression of the agrA gene in S. aureus was decreased by 0.46-0.56 folds. Furthermore, ZnO-Rutin NPs significantly reduced the swimming and twitching motility and pyocyanin production of P. aeruginosa. This study demonstrates the antivirulence features of ZnO-Rutin NPs against pathogenic bacteria which can be associated with their QS inhibitory effects.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Quorum Sensing , Rutin , Staphylococcus aureus , Zinc Oxide , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Rutin/pharmacology , Rutin/chemistry , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Quorum Sensing/drug effects , Nanoparticles/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Metal Nanoparticles/chemistry , Hemolysis/drug effects , Virulence/drug effects , Particle Size , Pyocyanine/metabolism
8.
In Vitro Cell Dev Biol Anim ; 60(4): 411-419, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38587579

ABSTRACT

Sjogren's syndrome (SS) is an autoimmune disease. Its mechanism and treatment methods are unclear. The purpose of this study was to investigate the effects of rutin (Ru) on SS. Proteomics was used to detect differential proteins in the submandibular glands of normal mice and SS mice. Salivary secretion (SAS) and salivary gland index (SGI) were detected. Oxidative stress and inflammatory cytokine in submandibular glands were detected. The levels of NLRP3, ASC, Caspase-1, IL-1ß, and p-NF-κBp65 in submandibular gland tissues and submandibular gland cells of overexpressed calcium-sensing receptor (over-CaR) mice and overexpressed CaR primary submandibular gland cells (over-CaR-PSGs) were detected. In total, 327 differential proteins were identified in the submandibular gland tissues of SS mice compared to control mice. CaR was one of the most differential proteins and significantly increased compared to control mice. Ru could significantly increase SGI and SGI, and inhibit oxidative stress and inflammatory cytokine in submandibular glands. In addition, Ru was shown to further improve SS via regulation of the CaR/NOD-like receptor thermal protein domain associated protein 3 (NLRP3)/nuclear factor kappa-B (NF-κB) signal pathway. Overexpression of CaR counteracted partial activity of Ru. CaR may be an important target for the treatment of SS. In addition, Ru improved the SS via the CaR/NLRP3/NF-κB signal pathway. This study provides a basis for the treatments for SS.


Subject(s)
NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress , Rutin , Signal Transduction , Sjogren's Syndrome , Submandibular Gland , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Sjogren's Syndrome/drug therapy , Sjogren's Syndrome/metabolism , Sjogren's Syndrome/pathology , Signal Transduction/drug effects , NF-kappa B/metabolism , Rutin/pharmacology , Rutin/therapeutic use , Mice , Submandibular Gland/metabolism , Submandibular Gland/drug effects , Submandibular Gland/pathology , Oxidative Stress/drug effects , Female , Cytokines/metabolism , Mice, Inbred C57BL
10.
Food Chem Toxicol ; 187: 114626, 2024 May.
Article in English | MEDLINE | ID: mdl-38556157

ABSTRACT

Rutin is a flavonoid present in numerous fruits and vegetables and therefore widely consumed by humans. It is also a popular dietary supplement of 250-500 mg/day. There is considerable consumer interest in rutin due to numerous reports in the biomedical literature of its multi-system chemo-preventive properties. The present paper provides the first assessment of rutin-induced hormetic concentration/dose responses, their quantitative features and mechanistic basis, along with their biological, biomedical, clinical, and public health implications. The findings indicate that rutin-induced hormetic dose responses are widespread, being reported in numerous biological models and cell types for a wide range of endpoints. Of critical importance is that the optimal hormetic findings shown in in vitro systems are currently not achievable for human populations due to low gastrointestinal tract bioavailability. These findings have the potential to strengthen future experimental studies with rutin, particularly concerning study design parameters.


Subject(s)
Hormesis , Rutin , Humans , Rutin/pharmacology , Flavonoids/pharmacology , Models, Biological , Vegetables
11.
Inflammopharmacology ; 32(2): 1295-1315, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38512652

ABSTRACT

Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease of the central nervous system that injures the myelin sheath, provoking progressive axonal degeneration and functional impairments. No efficient therapy is available at present to combat such insults, and hence, novel safe and effective alternatives for MS therapy are extremely required. Rutin (RUT) is a flavonoid that exhibits antioxidant, anti-inflammatory, and neuroprotective effects in several brain injuries. The present study evaluated the potential beneficial effects of two doses of RUT in a model of pattern-III lesion of MS, in comparison to the conventional standard drug; dimethyl fumarate (DMF). Demyelination was induced in in male adult C57BL/6 mice by dietary 0.2% (w/w) cuprizone (CPZ) feeding for 6 consecutive weeks. Treated groups received either oral RUT (50 or 100 mg/kg) or DMF (15 mg/kg), along with CPZ feeding, for 6 consecutive weeks. Mice were then tested for behavioral changes, followed by biochemical analyses and histological examinations of the corpus callosum (CC). Results revealed that CPZ caused motor dysfunction, demyelination, and glial activation in demyelinated lesions, as well as significant oxidative stress, and proinflammatory cytokine elevation. Six weeks of RUT treatment significantly improved locomotor activity and motor coordination. Moreover, RUT considerably improved remyelination in the CC of CPZ + RUT-treated mice, as revealed by luxol fast blue staining and transmission electron microscopy. Rutin also significantly attenuated CPZ-induced oxidative stress and inflammation in the CC of tested animals. The effect of RUT100 was obviously more marked than either that of DMF, regarding most of the tested parameters, or even its smaller tested dose. In silico docking revealed that RUT binds tightly within NF-κB at the binding site of the protein-DNA complex, with a good negative score of -6.79 kcal/mol. Also, RUT-Kelch-like ECH-associated protein 1 (Keap1) model clarifies the possible inhibition of Keap1-Nrf2 protein-protein interaction. Findings of the current study provide evidence for the protective effect of RUT in CPZ-induced demyelination and behavioral dysfunction in mice, possibly by modulating NF-κB and Nrf2 signaling pathways. The present study may be one of the first to indicate a pro-remyelinating effect for RUT, which might represent a potential additive benefit in treating MS.


Subject(s)
Demyelinating Diseases , Multiple Sclerosis , Neurodegenerative Diseases , Neuroprotective Agents , Male , Animals , Mice , Multiple Sclerosis/chemically induced , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Cuprizone/adverse effects , Kelch-Like ECH-Associated Protein 1/metabolism , Demyelinating Diseases/chemically induced , Demyelinating Diseases/drug therapy , Demyelinating Diseases/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , NF-kappa B/metabolism , Rutin/pharmacology , NF-E2-Related Factor 2/metabolism , Neurodegenerative Diseases/drug therapy , Mice, Inbred C57BL , Disease Models, Animal
12.
Int J Biol Macromol ; 264(Pt 2): 130624, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38453105

ABSTRACT

Cyclin-dependent kinase 6 (CDK6) participates in numerous signalling pathways and regulates various physiological processes. Due to its unique structural features and promising therapeutic potential, CDK6 has emerged as a drug target for designing and developing small-molecule inhibitors for anti-cancer therapeutics and other CDK6-associated diseases. The current study evaluates binding affinity and the inhibitory potential of rutin for CDK6 to develop a proof of concept for rutin as a potent CDK6 inhibitor. Molecular docking and 200 ns all-atom simulations reveal that rutin binds to the active site pocket of CDK6, forming interactions with key residues of the binding pocket. In addition, the CDK6-rutin complex remains stable throughout the simulation trajectory. A high binding constant (Ka = 7.6 × 105M-1) indicates that rutin has a strong affinity for CDK6. Isothermal titration calorimetry has further validated a strong binding of rutin with CDK6 and its spontaneous nature. The kinase activity of CDK6 is significantly inhibited by rutin with an IC50 value of 3.10 µM. Our findings highlight the significant role of rutin in developing potential therapeutic molecules to manage cancer and CDK6-associated diseases via therapeutic targeting of CDK6.


Subject(s)
Cyclin-Dependent Kinase 6 , Neoplasms , Humans , Rutin/pharmacology , Molecular Docking Simulation , Phosphorylation , Protein Processing, Post-Translational
13.
Ecotoxicol Environ Saf ; 274: 116195, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38479315

ABSTRACT

Fluoride is known to induce nephrotoxicity; however, the underlying mechanisms remain incompletely understood. Therefore, this study aims to explore the roles and mechanisms of lysosomal membrane permeabilization (LMP) and the GSDME/HMGB1 axis in fluoride-induced nephrotoxicity and the protective effects of rutin. Rutin, a naturally occurring flavonoid compound known for its antioxidative and anti-inflammatory properties, is primarily mediated by inhibiting oxidative stress and reducing proinflammatory markers. To that end, we established in vivo and in vitro models. In the in vivo study, rats were exposed to sodium fluoride (NaF) throughout pregnancy and up until 2 months after birth. In parallel, we employed in vitro models using HK-2 cells treated with NaF, n-acetyl-L-cysteine (NAC), or rutin. We assessed lysosomal permeability through immunofluorescence and analyzed relevant protein expression via western blotting. Our findings showed that NaF exposure increased ROS levels, resulting in enhanced LMP and increased cathepsin B (CTSB) and D (CTSD) expression. Furthermore, the exposure to NaF resulted in the upregulation of cleaved PARP1, cleaved caspase-3, GSDME-N, and HMGB1 expressions, indicating cell death and inflammation-induced renal damage. Rutin mitigates fluoride-induced nephrotoxicity by suppressing ROS-mediated LMP and the GSDME/HMGB1 axis, ultimately preventing fluoride-induced renal toxicity occurrence and development. In conclusion, our findings suggest that NaF induces renal damage through ROS-mediated activation of LMP and the GSDME/HMGB1 axis, leading to pyroptosis and inflammation. Rutin, a natural antioxidative and anti-inflammatory dietary supplement, offers a novel approach to prevent and treat fluoride-induced nephrotoxicity.


Subject(s)
Fluorides , HMGB1 Protein , Kidney Diseases , Rutin , Animals , Rats , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Caspase 3/metabolism , Fluorides/metabolism , Fluorides/toxicity , HMGB1 Protein/drug effects , HMGB1 Protein/metabolism , Inflammation/metabolism , Lysosomes/drug effects , Pyroptosis/drug effects , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/toxicity , Rutin/pharmacology , Sodium Fluoride/toxicity , Kidney Diseases/chemically induced , Kidney Diseases/drug therapy , Gasdermins/drug effects , Gasdermins/metabolism
14.
PLoS One ; 19(3): e0300899, 2024.
Article in English | MEDLINE | ID: mdl-38527045

ABSTRACT

Pollution produced by exposure to pesticides is a major concern for food security because the negative impacts on pollinators. Fipronil, an insecticide broadly used around the globe has been associated with the ongoing decline of bees. With a characteristic neuroactive toxicodynamic, fipronil leads to cognitive and motor impairments at sublethal dosages. Despite of regional bans, multilevel strategies are necessary for the protection of pollinators. Recent evidence suggests that specific nutrients in the diets of bees may induce protection against insecticides. Here, we evaluated whether the administration of three phytochemicals, namely rutin, kaempferol and p-coumaric acid provide protection to the Africanized honey bee Apis mellifera against oral administration of realistic dosages of fipronil. We tested the potential impairment produced by fipronil and the protection induced by the phytochemicals in learning, 24h memory, sucrose sensitivity and motor control. We found that the administration of fipronil induced a concentration-dependent impairment in learning and motor control, but not 24h memory or sucrose sensitivity across a 24h window. We also found that the administration of rutin, p-coumaric acid, kaempferol and the mixture was innocuous and generally offered protection against the impairments induced by fipronil. Overall, our results indicate that bees can be prophylactically protected against insecticides via nutrition, providing an alternative to the ongoing conflict between the use of insecticides and the decline of pollinators. As the studied phytochemicals are broadly present in nectar and pollen, our results suggest that the nutritional composition, and not only its production, should be considered when implementing strategies of conservation via gardens and co-cropping.


Subject(s)
Coumaric Acids , Insecticides , Motor Disorders , Pyrazoles , Bees , Animals , Insecticides/toxicity , Kaempferols , Sucrose , Phytochemicals , Rutin , Administration, Oral , Cognition
15.
Int J Mol Sci ; 25(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38473728

ABSTRACT

Apoptosis signaling controls the cell cycle through the protein-protein interactions (PPIs) of its major B-cell lymphoma 2-associated x protein (BAX) and B-cell lymphoma 2 protein (Bcl-2). Due to the antagonistic function of both proteins, apoptosis depends on a properly tuned balance of the kinetics of BAX and Bcl-2 activities. The utilization of natural polyphenols to regulate the binding process of PPIs is feasible. However, the mechanism of this modulation has not been studied in detail. Here, we utilized atomic force microscopy (AFM) to evaluate the effects of polyphenols (kaempferol, quercetin, dihydromyricetin, baicalin, curcumin, rutin, epigallocatechin gallate, and gossypol) on the BAX/Bcl-2 binding mechanism. We demonstrated at the molecular scale that polyphenols quantitatively affect the interaction forces, kinetics, thermodynamics, and structural properties of BAX/Bcl-2 complex formation. We observed that rutin, epigallocatechin gallate, and baicalin reduced the binding affinity of BAX/Bcl-2 by an order of magnitude. Combined with surface free energy and molecular docking, the results revealed that polyphenols are driven by multiple forces that affect the orientation freedom of PPIs, with hydrogen bonding, hydrophobic interactions, and van der Waals forces being the major contributors. Overall, our work provides valuable insights into how molecules tune PPIs to modulate their function.


Subject(s)
Polyphenols , Proto-Oncogene Proteins c-bcl-2 , Polyphenols/pharmacology , bcl-2-Associated X Protein/metabolism , Molecular Docking Simulation , Proto-Oncogene Proteins c-bcl-2/metabolism , Rutin
16.
Molecules ; 29(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38474563

ABSTRACT

Aeginetia indica L., a parasitic root in the Orobanchaceae family, is used as a food colorant in traditional Thai desserts. However, scant information is available on its food applications as well as medicinal properties, while overharvesting by the local people has severely depleted wild plant populations. This research, thus, aimed to extract optimized total phenolic content (TPC) in varying extraction conditions using response surface methodology (RSM) and the Box-Behnken design (BBD). Results indicated that an extraction temperature of 90 °C, 80% (v/v) aqueous ethanol, and 0.5% (w/v) solid-to-liquid ratio yielded the highest TPC at 129.39 mg gallic acid equivalent (GAE)/g dry weight (DW). Liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) identified the predominant phenolics as apigenin (109.06 mg/100 g extract) and luteolin (35.32 mg/100 g extract) with trace amounts of naringenin and rutin. Under the optimal extraction condition, the plant extract exhibited antioxidant activities of 5620.58 and 641.52 µmol Trolox equivalent (TE)/g DW determined by oxygen radical absorbance capacity (ORAC) and ferric ion reducing antioxidant power (FRAP) assay, while the scavenging capacity of total radicals at 50% (SC50) was determined to be 135.50 µg/mL using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. The plant extract also exhibited inhibitory activities against the key enzymes relevant to type II diabetes, obesity, and Alzheimer's disease, suggesting the potential for medicinal applications.


Subject(s)
Antioxidants , Diabetes Mellitus, Type 2 , Humans , Antioxidants/chemistry , Tandem Mass Spectrometry , Plant Extracts/chemistry , Rutin
17.
Molecules ; 29(5)2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38474645

ABSTRACT

Fruit peels might be a valuable source of active ingredients for cosmetics, leading to more sustainable usage of plant by-products. The aim of the study was to evaluate the phytochemical content and selected biological properties of hydroglycolic extracts from peels and pulps of Annona cherimola, Diospyros kaki, Cydonia oblonga, and Fortunella margarita as potential cosmetic ingredients. Peel and pulp extracts were compared for their antiradical activity (using DPPH and ABTS radical scavenging assays), skin-lightening potential (tyrosinase inhibitory assay), sun protection factor (SPF), and cytotoxicity toward human fibroblast, keratinocyte, and melanoma cell lines. The total content of polyphenols and/or flavonoids was significantly higher in peel than in pulp extracts, and the composition of particular active compounds was also markedly different. The HPLC-MS fingerprinting revealed the presence of catechin, epicatechin and rutoside in the peel of D. kaki, whereas kaempferol glucoside and procyanidin A were present only in the pulp. In A. cherimola, catechin, epicatechin and rutoside were identified only in the peel of the fruit, whereas procyanidins were traced only in the pulp extracts. Quercetin and luteolinidin were found to be characteristic compounds of F. margarita peel extract. Naringenin and hesperidin were found only in the pulp of F. margarita. The most significant compositional variety between the peel and pulp extracts was observed for C. oblonga: Peel extracts contained a higher number of active components (e.g., vicenin-2, kaempferol rutinoside, or kaempferol galactoside) than pulp extract. The radical scavenging potential of peel extracts was higher than of the pulp extracts. D. kaki and F. margarita peel and pulp extracts inhibited mushroom and murine tyrosinases at comparable levels. The C. oblonga pulp extract was a more potent mushroom tyrosinase inhibitor than the peel extract. Peel extract of A. cherimola inhibited mushroom tyrosinase but activated the murine enzyme. F. margarita pulp and peel extracts showed the highest in vitro SPF. A. cherimola, D. kaki, and F. margarita extracts were not cytotoxic for fibroblasts and keratinocytes up to a concentration of 2% (v/v) and the peel extracts were cytotoxic for A375 melanoma cells. To summarize, peel extracts from all analyzed fruit showed comparable or better cosmetic-related properties than pulp extracts and might be considered multifunctional active ingredients of skin lightening, anti-aging, and protective cosmetics.


Subject(s)
Annona , Catechin , Diospyros , Melanoma , Rosaceae , Rutaceae , Mice , Animals , Humans , Catechin/analysis , Antioxidants/pharmacology , Diospyros/chemistry , Kaempferols/analysis , Monophenol Monooxygenase , Thumb , Fruit/chemistry , Rosaceae/chemistry , Rutin/analysis , Phytochemicals/analysis , Plant Extracts/chemistry
18.
Asian Pac J Cancer Prev ; 25(3): 1065-1075, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38546089

ABSTRACT

BACKGROUND: Cervical cancer is a prevalent and deadly malignancy in females, with chemotherapy often proving ineffective due to significant side effects and the development of chemo-resistance. This study investigates the medicinal potential of Clerodendrum infortunatum linn. , a genus with approximately 500 species in the Lamiaceae family. Limited research exists on the species of Clerodendrum infortunatum and its various solvent extracts. OBJECTIVE: The study aims to assess the anti-cancer properties of different solvent extracts from this plant on human cervical cancer cells. METHODS: The study examines the plant's phytochemical components and their potential to inhibit cancer growth. Aerial parts of the plant were extracted using the Soxhlet method, and the presence of Rutin, Quercetin, and Gallic Acid in specific solvent extracts was validated through High-Performance Thin Layer Chromatography (HPTLC). In vitro assays, including MTT, Apoptosis, Cell Cycle analysis, Intracellular Reactive Oxygen Species assessment, and Gene expression PCR, were conducted to investigate the plant's anti-cancer properties further. RESULTS: The outcomes of the phytochemical assessment indicated that Rutin was predominantly present in the water extract, with quercetin being more concentrated in the decoction, and the hydro-alcoholic extract showing elevated levels of gallic acid. Notably, the decoction extract demonstrated the highest cytotoxic activity, primarily through early apoptosis and arrests in the S-phase and G2M phases. Clerodendrum infortunatum exhibited a reduction in Intracellular Reactive Oxygen Species. The gene expression analysis disclosed an impact on the BCL-2 gene. CONCLUSION: Notably, Clerodendrum infortunatum exhibited the ability to initiate early apoptosis, halt the cell cycle at the S and G2M phases, and diminish levels of reactive oxygen species significantly. The gene expression analysis revealed an influence on the BCL-2 gene. To sum up, this research underscores the encouraging cytotoxic and antioxidant attributes of Clerodendrum infortunatum, implying its potential for cervical cancer treatment.


Subject(s)
Clerodendrum , Uterine Cervical Neoplasms , Humans , Female , Plant Extracts/pharmacology , Plant Extracts/chemistry , Clerodendrum/chemistry , Uterine Cervical Neoplasms/drug therapy , Solvents , Quercetin/pharmacology , Reactive Oxygen Species , Phytochemicals , Gallic Acid , Rutin
19.
Toxins (Basel) ; 16(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38535787

ABSTRACT

Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin found in many agricultural products and can cause reproductive disorders, mainly affecting spermatogenesis in male animals. Rutin (RUT) is a natural flavonoid compound recognized for its significant antioxidant, anti-inflammatory and estrogenic properties. The present study aimed to determine the protective role of RUT against ZEN-induced reproductive toxicity in male mice. Twenty-four adult Kunming male mice were divided into four groups: control, RUT (500 mg/kg RUT), ZEN (10 mg/kg ZEN), ZEN + RUT (500 mg/kg RUT + 10 mg/kg ZEN), with six replicates per treatment. The results indicated that RUT mitigated ZEN-induced disruption in spermatogenic cell arrangement, decreased spermatozoa count, and increased sperm mortality in the testes. RUT significantly restored ZEN-induced reduction in T, FSH, LH, and E2 serum levels. Moreover, RUT mitigated ZEN-induced apoptosis by increasing the mRNA expression level of bcl-2, decreasing the mRNA expression level of kiss1-r, and decreasing the protein expression level of caspase 8 in reproductive tissues. These findings indicate the protective role of RUT against ZEN-induced reproductive toxicity in male mice by regulating gonadotropin and testosterone secretions to maintain normal spermatogenesis via the HPG axis, which may provide a new application direction for RUT as a therapeutic agent to mitigate ZEN-induced reproductive toxicity.


Subject(s)
Zearalenone , Male , Mice , Animals , Rutin , Hypothalamic-Pituitary-Gonadal Axis , Semen , Animals, Outbred Strains , Apoptosis , RNA, Messenger , Gene Expression
20.
Med J Malaysia ; 79(Suppl 1): 34-39, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38555883

ABSTRACT

INTRODUCTION: Parkia speciosa Hassk., commonly known as bitter bean or twisted cluster bean, is a tropical leguminous plant species native to Southeast Asia. The plant's edible pods have been traditionally used in various cuisines, particularly in Malaysian, Thai, and Indonesian cooking. Apart from being used as a food ingredient, the pods of P. speciosa also have a range of potential applications in other fields, including medicine, agriculture, and industry. The pods are said to have several phytochemicals that hold great therapeutic values such as reducing inflammation, improving digestion, and lowering blood sugar levels. However, there is limited information on the specific phytochemical contents of the pods in the literature. Thus, the aim of this study is to quantify the total phenolic and flavonoid compounds and to determine the concentrations of four selected phytochemical compounds in the P. speciosa pod extract (PSPE). MATERIALS AND METHODS: Quantification of the total phenolic (TPC) and flavonoid contents (TFC) in PSPE were done via colourimetric methods; and the determination of the concentrations of four specific phytochemicals (gallic acid, caffeic acid, rutin, and quercetin) were done via High- Performance Liquid Chromatography (HPLC). RESULTS: Colourimetric determination of PSPE showed TPC and TFC values of 84.53±9.40 mg GAE/g and 11.96±4.51 mg QE/g, respectively. Additional analysis of the phytochemicals using HPLC revealed that there were 6.45±3.36 g/kg, 5.91±1.07 g/kg, 0.39±0.84 g/kg, and 0.19±0.47 g/kg of caffeic acid, gallic acid, rutin, and quercetin, respectively. CONCLUSION: The findings show that PSPE contains substantial amounts of caffeic acid, gallic acid, rutin, and quercetin, which may indicate its potential as antibacterial, anti-inflammatory, anti-lipid, and antiviral medicines.


Subject(s)
Antioxidants , Quercetin , Humans , Quercetin/analysis , Antioxidants/analysis , Antioxidants/chemistry , Chromatography, High Pressure Liquid/methods , Flavonoids/analysis , Gallic Acid/analysis , Phenols/analysis , Phenols/chemistry , Rutin/analysis , Phytochemicals/analysis , Plant Extracts
SELECTION OF CITATIONS
SEARCH DETAIL
...